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LE’lTER TO THE EDITOR 
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Ames Laboratory and Departments of Mathematics and Physics, Iowa State University, 
Ames, IA 5001 1, USA 

Received 23 November 1989 

Abstract. We consider the growth of Eden clusters on a square lattice about randomly 
distributed seeds, or through continuous nucleation. We analyse the dependence of the 
percolation threshold, p , ,  on the seed density, or ratio of nucleation to growth rates, i.e. 
on parameters controlling the average size of individual clusters or islands before coales- 
cence. We find that pc  approaches a large island size continuum limit from below at a rate 
depending on the active zone width scaling exponent. This result applies to a variety of 
island-forming models. 

Several studies have confirmed that various lattice and continuum percolation problems 
are in the same universality class [l]. Domb had noted much earlier that continuum 
percolation of equal-sized circles or spheres can be obtained from lattice percolation 
in the limit of long-range connectivity [ 2 ] .  More concisely, one assigns filled sites to 
the same cluster if they are separated by a Euclidean distance of R or less, and then 
lets R +CO. Changing from Euclidean to other metrics generates continuum percolation 
problems for equal-sized aligned objects of various shapes, as R + CO. 

In this letter, we analyse another less trivial transition from lattice to continuum 
percolation associated with non-equilibrium models on a square lattice, wherein com- 
pact islands grow either about randomly distributed seeds or via continuous nucleation. 
These islands eventually coalesce to form percolating clusters. The continuum (large 
island size) limit is achieved as the seed density, E, or ratio of nucleation to growth 
rates, a-’, vanish. Specifically we focus on the case where islands are Eden clusters 
[3]. Thus for growth about seeds, all empty perimeter sites fill at the same rate, i.e. 
with equal probability. For continuous nucleation, empty sites with all neighbours 
empty fill with rate 1, and empty perimeter sites fill at rate a 3 1. Pictures of island 
distributions for these models, and their continuum limits, can be found in [4, 51. 

The finite size scaling procedure used to estimate percolation thresholds, p c ,  for 
these models is described in detail elsewhere [4,6]. Briefly, for an L x L square lattice 
with periodic boundary conditions, we determine the second moment of the number 
of sites per cluster, M L ( p ) ,  as a function of occupancy, p .  The p-values where the 
functions RL = M Z L /  ML intersect, for different L, should approach p c  as L +CO. RL- 
values at the intersection points should approach 2*+”’“ where y (  v) is the cluster size 
(connectivity length) exponent. Since these models have finite-range correlations, one 
expects (and our results suggest) random percolation universality where 22+y’y = 13.85. 
Thus we can alternatively estimate p c  from the L+CO behaviour of p-values where 
RL = 13.85. For growth about seeds with various E, such p-values are shown in table 
1, and behaviour of the associated p,-estimates is shown in figure 1. Corresponding 
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Table 1. Growth of Eden clusters about seeds of density E ;  p-values are reported at which 
R ,  = 13.85 for filled clusters with 2nd N N  [NN] connectivity. Uncertainties in the last digit 
are shown in parentheses ( ). 

E L=16 L=32 L=64 L= 128 

0.1 0.421 E0.5241 0.417 r0.5271 0.419 E0.5321 (1) 
0.04 0.442 0.430 [0.504] 0.424 [0.508] (2) 
0.01 0.473 [0.509] 0.464 r0.5241 (2)  
0.004 0.526 [0.523] 0.513 [0.541] (3) 
0.001 [0.5 121 0.605 [0.567] (8) 
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0.4 

0 0.2 0.4 0.6 0.8 
E 114 

Figure 1. Filled site percolation thresholds for N N  connectivity, p,( I ) ,  and for 2nd N N  

connectivity, p,(2), for growth of Eden clusters about randomly distributed seeds of 
density, E. 

Table 2. Continuous nucleation (at rate 1) and growth (at rate a) of Eden clusters; p-values 
are reported at which R,=  13.85 for filled clusters with 2nd N N  [NN] connectivity. 
Uncertainties are also shown. 

a L=32 L = 64 L= 128 

49 0.448 [OS171 0.438 [0.524] 0.441 [0.515] (2) 
150 0.475 [OS091 0.468 [OS231 0.459 [OS201 (2) 
499 0.502 r0.5301 0.490 [OS371 (2) 

2 000 [OS411 0.540 [0.556] (3) 
15 000 0.630 [0.59] (4) 



Letter to the Editor L199 

results for continuous nucleation with various a are shown in table 2 and figure 2. 
Also included in figure 2 are previous p,-estimates for continuous nucleation for a 
restricted range of ‘small’ (Y [4,5]. Results become less accurate as E decreases and 
a increases because of the larger statistical fluctuations associated with larger islands, 
and the need to use larger lattices to achieve convergence. 

Early king model studies (for a review see [7]) fostered the view that the introduc- 
tion of clustering (positive correlations) enhances percolation, i.e. reduces the filled 
site percolation threshold, p , .  However, more extensive numerical studies for both 
lattice and continuum systems reveal that clustering can either enhance or inhibit 
percolation depending on the choice of connectivity [8]. For a simple demonstration 
of this behaviour, consider the Ising model on a square lattice with nearest-neighbour 
( N N )  attractive interactions. For N N  connectivity, p c  = p,(  1) decreases with increasing 
interaction strength [7,8]. Then using particle-hole symmetry, the empty site percola- 
tion threshold for N N  connectivity, ph( 1) = 1 - p c (  l), increases with increasing interac- 
tion strength. However, p:(l) must coincide with p,(2), the filled site percolation 
threshold for 2nd N N  connectivity (cf [ 9 ] ) ,  since either the ”-empty or the 2nd 
“-filled clusters must percolate (but not both since they cannot cross each other). 
Thus p,(l) and pJ2) are complementary and exhibit opposite behaviour with the 
introduction of clustering. Clearly this also holds for an equilibrated lattice gas with 
arbitrary-range pairwise interactions. Finally we note that for very general distributions 
of filled sites with clusters defined by ‘long-range’ connectivity, the introduction of 
‘short-range’ clustering will clearly inhibit percolation, i.e. raise the threshold. Here 
percolation is enhanced for suitably dispersed, not clustered, distributions of filled sites. 

Such behaviour of the filled site percolation threshold, p , ,  is seen in our non- 
equilibrium models (figures 1 and 2). The introduction of clustering (i.e. by lowering 
E below the independent site percolation threshold of 0.593, or by raising (Y above 
unity) initially lowers p c  = pc(  1) for N N  connectivity, but raises p c  for 2nd and longer- 
range connectivity. It should be noted that here there is no particle-hole symmetry, 
so opposite behaviour of p,(l) and p,(2) is not guaranteed. In this contribution, our 
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Figure 2. Filled site percolation thresholds, pJl )  and p , ( 2 ) ,  for continuous nucleation (at 
rate 1 )  and growth (at rate a) of Eden clusters. 
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focus is on characterising the nature of the approach of pc  to its continuum limit. Thus 
the remaining discussion develops a simple picture (sketched previously [4]) of island 
and near-percolation cluster structure in the E << 1 or a >> 1 large island regime. 

An individual island or Eden cluster or characteristic radius R becomes asymptoti- 
cally near-circular as R + CO [ 101, and has an active or growing zone at its perimeter 
of width 8 - Rq'R'. Here q(R) is an 'effective exponent' which varies from q - 0.52 
when R - 10, to q -0.36 when R - lo2, to 0.50 for R b lo3 [ l l ] .  With each island, 
one naturally associates outer and inner convex (roughly circular) envelopes to the 
active zone. We anticipate that only the outer envelopes need link or overlap to form 
percolating clusters (see figure 3). Let ( ) denote an average over individual islands. 
Then visualisation of the approach to the continuum limit, and analysis of p,-depen- 
dence on (R) and (e), is naturally facilitated by a length rescaling wherein the rescaled 
average island radius is unity, and the rescaled average active zone width is ([/R)- 
(R)q-'. Thus the continuum limit, (R)-,co, corresponds to solid islands with rescaled 
active zone widths of zero. Increasing the rescaled average width, (&/R),  clearly reduces 
the fractional coverage or occupancy at percolation, i.e. fuzzy island edges enhance 
percolation. Since the islands are solid interior to the active zone (in contrast to 
diffusion-limited-aggregation clusters), it is reasonable to expect that 

~ ~ ( 0 )  -P , ( (~ /R))  -O(( t /R))  - O((R)'-') as (R)+co 

where p,(O) represents the continuum limit of the threshold. This large-(R) scaling, 
and obviously p , (O) ,  are independent of the choice of finite-range connectivity. This 
explains the coalescence of p,(l) and p c ( 2 )  curves in figures 1 and 2. Since p c ( 2 )  
corresponds to the percolation threshold for "-empty clusters, the coalescence of 
these curves can also be explained by the necessary coincidence of continuum percola- 
tion thresholds for empty and filled regions [4]. 

We now apply this result to the models under consideration. For growth about 
seeds, clearly one has that (R) - E - " ' ,  and consequently pc  approaches p,(O) like 

Figure 3. Schematic of the structure of continuously nucleated islands (e.g. Eden clusters), 
and a percolating cluster of such islands. The full lines represent the boundaries of filled 
regions. Outer and inner envelopes of active zones are indicated by broken lines. 
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E ( ’ - ~ ” * - E ’ ’ ~ ,  as E + O  (see figure 1). Here the continuum limit corresponds to the 
growth of near-circular islands, at constant rate, about randomly distributed points in 
the plane. Thus p, (O)  should be very close to the percolation threshold, 0.677*0.004 
[ I ,  121 for equal sized discs randomly distributed in the plane. For continuous 
nucleation, one has that ( R ) -  [5, 131, so pc  approaches p,(O) like a-( ’ -4) ’3-  a-’’6, 
as a + 00 (see figure 2). As noted previously [4], here the continuum limit corresponds 
to a new Johnson-Mehl [ 141 type percolation problem, where near-circular islands 
continuously nucleate and grow in the plane. From figure 2, we estimate its percolation 
threshold at about 0.7. This result is not surprising since continuum percolation 
thresholds seem fairly stable against introducing a ‘regular’ distribution of island radii 
[ 151. (However, such p c  can approach unity for pathological distributions [ 161.) 

In summary, we have developed some generic ideas for elucidating the influence 
of clustering on the percolation threshold and, in particular, the nature of the approach 
to the large island size continuum limit. The influence on pc  of introducing clustering 
clearly depends on the connectivity rule (cf [8]), and for non-equilibrium models of 
the type considered here we expect p E  to approach its continuum limit from below. 
The rate of convergence will be faster (slower) for compact islands with narrower 
(broader) active zones, i.e. smaller (larger) q 2 0. For example, convergence will be 
much faster if one chooses multiplicative [4] (rather than Eden) rates, since then active 
zone widths are 0(1)  up to coalescence [4]. 

The author would like to acknowledge D E Sanders’ contributions in developing the 
computer code. Ames Laboratory is operated for the US Department of Energy by 
Iowa State University under contract No W-7405-Eng-82. This work was supported 
by the Applied Mathematical Sciences subprogram of the Office of Basic Energy 
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